Abstract:In this study, we investigated the relationship between sailboat technical specifications and their prices, as well as regional pricing influences. Utilizing a dataset encompassing characteristics like length, beam, draft, displacement, sail area, and waterline, we applied multiple machine learning models to predict sailboat prices. The gradient descent model demonstrated superior performance, producing the lowest MSE and MAE. Our analysis revealed that monohulled boats are generally more affordable than catamarans, and that certain specifications such as length, beam, displacement, and sail area directly correlate with higher prices. Interestingly, lower draft was associated with higher listing prices. We also explored regional price determinants and found that the United States tops the list in average sailboat prices, followed by Europe, Hong Kong, and the Caribbean. Contrary to our initial hypothesis, a country's GDP showed no direct correlation with sailboat prices. Utilizing a 50% cross-validation method, our models yielded consistent results across test groups. Our research offers a machine learning-enhanced perspective on sailboat pricing, aiding prospective buyers in making informed decisions.
Abstract:In this study, we delve into the dynamics of Wordle using data analysis and machine learning. Our analysis initially focused on the correlation between the date and the number of submitted results. Due to initial popularity bias, we modeled stable data using an ARIMAX model with coefficient values of 9, 0, 2, and weekdays/weekends as the exogenous variable. We found no significant relationship between word attributes and hard mode results. To predict word difficulty, we employed a Backpropagation Neural Network, overcoming overfitting via feature engineering. We also used K-means clustering, optimized at five clusters, to categorize word difficulty numerically. Our findings indicate that on March 1st, 2023, around 12,884 results will be submitted and the word "eerie" averages 4.8 attempts, falling into the hardest difficulty cluster. We further examined the percentage of loyal players and their propensity to undertake daily challenges. Our models underwent rigorous sensitivity analyses, including ADF, ACF, PACF tests, and cross-validation, confirming their robustness. Overall, our study provides a predictive framework for Wordle gameplay based on date or a given five-letter word. Results have been summarized and submitted to the Puzzle Editor of the New York Times.