Abstract:The Long Short-Term Memory (LSTM) networks have traditionally faced challenges in scaling and effectively capturing complex dependencies in visual tasks. The xLSTM architecture has emerged to address these limitations, incorporating exponential gating and a parallel matrix memory structure to enhance performance and scalability. Despite these advancements, the potential of xLSTM in visual computing has not been fully realized, particularly in leveraging autoregressive techniques for improved feature extraction. In this paper, we introduce MAL (Cluster-Masked and Multi-Task Pretraining for Enhanced xLSTM Vision Performance), a novel framework that enhances xLSTM's capabilities through innovative pretraining strategies. We propose a cluster-masked masking method that significantly improves local feature capture and optimizes image scanning efficiency. Additionally, our universal encoder-decoder pretraining approach integrates multiple tasks, including image autoregression, depth estimation, and image segmentation, thereby enhancing the model's adaptability and robustness across diverse visual tasks. Our experimental results demonstrate that MAL surpasses traditional supervised models and fully leverages the scaling potential of xLSTM, setting a new benchmark in visual task performance.
Abstract:Multimodal Large Language Models (MLLMs) have attracted much attention due to their multifunctionality. However, traditional Transformer architectures incur significant overhead due to their secondary computational complexity. To address this issue, we introduce ML-Mamba, a multimodal language model that utilizes the latest and efficient Mamba-2 model for inference. Mamba-2 is known for its linear extension and fast processing of long sequences. We replace the Transformer based backbone with a pre-trained Mamba-2 model and explore methods for integrating 2D visual selective scanning mechanisms into multimodal learning. We also try various visual encoders and Mamba-2 model variants. Our extensive experiments conducted in various multimodal benchmark tests have demonstrated the competitive performance of ML-Mamba and highlighted the potential of state space models in multimodal tasks. The experimental results show that: (1) ML-Mamba achieves performance comparable to state-of-the-art methods such as TinyLaVA and MobileVLM v2 through its linear sequential modeling, while also having faster inference speed; (2) ML-Mamba performs well in visual hallucinations and spatial relationship judgment in closed set benchmark tests; (3) ML-Mamba achieves performance comparable to LLaVA while reducing the number of parameters by 40\%.(4) Compared to the multimodal model using the original Mamba model, the Mamba-2 based large-scale multimodal language model has stronger inference performance and effectiveness.