Abstract:This paper presents the SZU-AFS anti-spoofing system, designed for Track 1 of the ASVspoof 5 Challenge under open conditions. The system is built with four stages: selecting a baseline model, exploring effective data augmentation (DA) methods for fine-tuning, applying a co-enhancement strategy based on gradient norm aware minimization (GAM) for secondary fine-tuning, and fusing logits scores from the two best-performing fine-tuned models. The system utilizes the Wav2Vec2 front-end feature extractor and the AASIST back-end classifier as the baseline model. During model fine-tuning, three distinct DA policies have been investigated: single-DA, random-DA, and cascade-DA. Moreover, the employed GAM-based co-enhancement strategy, designed to fine-tune the augmented model at both data and optimizer levels, helps the Adam optimizer find flatter minima, thereby boosting model generalization. Overall, the final fusion system achieves a minDCF of 0.115 and an EER of 4.04% on the evaluation set.
Abstract:The task of partially spoofed audio localization aims to accurately determine audio authenticity at a frame level. Although some works have achieved encouraging results, utilizing boundary information within a single model remains an unexplored research topic. In this work, we propose a novel method called Boundary-aware Attention Mechanism (BAM). Specifically, it consists of two core modules: Boundary Enhancement and Boundary Frame-wise Attention. The former assembles the intra-frame and inter-frame information to extract discriminative boundary features that are subsequently used for boundary position detection and authenticity decision, while the latter leverages boundary prediction results to explicitly control the feature interaction between frames, which achieves effective discrimination between real and fake frames. Experimental results on PartialSpoof database demonstrate our proposed method achieves the best performance. The code is available at https://github.com/media-sec-lab/BAM.