Abstract:By selecting different filter functions, spectral algorithms can generate various regularization methods to solve statistical inverse problems within the learning-from-samples framework. This paper combines distributed spectral algorithms with Sobolev kernels to tackle the functional linear regression problem. The design and mathematical analysis of the algorithms require only that the functional covariates are observed at discrete sample points. Furthermore, the hypothesis function spaces of the algorithms are the Sobolev spaces generated by the Sobolev kernels, optimizing both approximation capability and flexibility. Through the establishment of regularity conditions for the target function and functional covariate, we derive matching upper and lower bounds for the convergence of the distributed spectral algorithms in the Sobolev norm. This demonstrates that the proposed regularity conditions are reasonable and that the convergence analysis under these conditions is tight, capturing the essential characteristics of functional linear regression. The analytical techniques and estimates developed in this paper also enhance existing results in the previous literature.
Abstract:Previous analysis of regularized functional linear regression in a reproducing kernel Hilbert space (RKHS) typically requires the target function to be contained in this kernel space. This paper studies the convergence performance of divide-and-conquer estimators in the scenario that the target function does not necessarily reside in the underlying RKHS. As a decomposition-based scalable approach, the divide-and-conquer estimators of functional linear regression can substantially reduce the algorithmic complexities in time and memory. We develop an integral operator approach to establish sharp finite sample upper bounds for prediction with divide-and-conquer estimators under various regularity conditions of explanatory variables and target function. We also prove the asymptotic optimality of the derived rates by building the mini-max lower bounds. Finally, we consider the convergence of noiseless estimators and show that the rates can be arbitrarily fast under mild conditions.