Abstract:Bearing in mind the limited parametric knowledge of Large Language Models (LLMs), retrieval-augmented generation (RAG) which supplies them with the relevant external knowledge has served as an approach to mitigate the issue of hallucinations to a certain extent. However, uniformly retrieving supporting context makes response generation source-inefficient, as triggering the retriever is not always necessary, or even inaccurate, when a model gets distracted by noisy retrieved content and produces an unhelpful answer. Motivated by these issues, we introduce Semantic Uncertainty Guided Adaptive Retrieval (SUGAR), where we leverage context-based entropy to actively decide whether to retrieve and to further determine between single-step and multi-step retrieval. Our empirical results show that selective retrieval guided by semantic uncertainty estimation improves the performance across diverse question answering tasks, as well as achieves a more efficient inference.
Abstract:Diffusion models have demonstrated remarkable performance in generation tasks. Nevertheless, explaining the diffusion process remains challenging due to it being a sequence of denoising noisy images that are difficult for experts to interpret. To address this issue, we propose the three research questions to interpret the diffusion process from the perspective of the visual concepts generated by the model and the region where the model attends in each time step. We devise tools for visualizing the diffusion process and answering the aforementioned research questions to render the diffusion process human-understandable. We show how the output is progressively generated in the diffusion process by explaining the level of denoising and highlighting relationships to foundational visual concepts at each time step through the results of experiments with various visual analyses using the tools. Throughout the training of the diffusion model, the model learns diverse visual concepts corresponding to each time-step, enabling the model to predict varying levels of visual concepts at different stages. We substantiate our tools using Area Under Cover (AUC) score, correlation quantification, and cross-attention mapping. Our findings provide insights into the diffusion process and pave the way for further research into explainable diffusion mechanisms.
Abstract:Despite deep learning (DL) has achieved remarkable progress in various domains, the DL models are still prone to making mistakes. This issue necessitates effective debugging tools for DL practitioners to interpret the decision-making process within the networks. However, existing debugging methods often demand extra data or adjustments to the decision process, limiting their applicability. To tackle this problem, we present NeuroInspect, an interpretable neuron-based debugging framework with three key stages: counterfactual explanations, feature visualizations, and false correlation mitigation. Our debugging framework first pinpoints neurons responsible for mistakes in the network and then visualizes features embedded in the neurons to be human-interpretable. To provide these explanations, we introduce CLIP-Illusion, a novel feature visualization method that generates images representing features conditioned on classes to examine the connection between neurons and the decision layer. We alleviate convoluted explanations of the conventional visualization approach by employing class information, thereby isolating mixed properties. This process offers more human-interpretable explanations for model errors without altering the trained network or requiring additional data. Furthermore, our framework mitigates false correlations learned from a dataset under a stochastic perspective, modifying decisions for the neurons considered as the main causes. We validate the effectiveness of our framework by addressing false correlations and improving inferences for classes with the worst performance in real-world settings. Moreover, we demonstrate that NeuroInspect helps debug the mistakes of DL models through evaluation for human understanding. The code is openly available at https://github.com/yeongjoonJu/NeuroInspect.