Abstract:We extend the use of Classification Without Labels for anomaly detection with a hypothesis test designed to exclude the background-only hypothesis. By testing for statistical independence of the two discriminating dataset regions, we are able exclude the background-only hypothesis without relying on fixed anomaly score cuts or extrapolations of background estimates between regions. The method relies on the assumption of conditional independence of anomaly score features and dataset regions, which can be ensured using existing decorrelation techniques. As a benchmark example, we consider the LHC Olympics dataset where we show that mutual information represents a suitable test for statistical independence and our method exhibits excellent and robust performance at different signal fractions even in presence of realistic feature correlations.
Abstract:Unsupervised anomaly detection could be crucial in future analyses searching for rare phenomena in large datasets, as for example collected at the LHC. To this end, we introduce a physics inspired variational autoencoder (VAE) architecture which performs competitively and robustly on the LHC Olympics Machine Learning Challenge datasets. We demonstrate how embedding some physical observables directly into the VAE latent space, while at the same time keeping the classifier manifestly agnostic to them, can help to identify and characterise features in measured spectra as caused by the presence of anomalies in a dataset.