Abstract:We expose the danger of reward poisoning in offline multi-agent reinforcement learning (MARL), whereby an attacker can modify the reward vectors to different learners in an offline data set while incurring a poisoning cost. Based on the poisoned data set, all rational learners using some confidence-bound-based MARL algorithm will infer that a target policy - chosen by the attacker and not necessarily a solution concept originally - is the Markov perfect dominant strategy equilibrium for the underlying Markov Game, hence they will adopt this potentially damaging target policy in the future. We characterize the exact conditions under which the attacker can install a target policy. We further show how the attacker can formulate a linear program to minimize its poisoning cost. Our work shows the need for robust MARL against adversarial attacks.