Abstract:Several recent studies have demonstrated that deep-learning based image generation models, such as GANs, can be uniquely identified, and possibly even reverse-engineered, by the fingerprints they leave on their output images. We extend this research to single image super-resolution (SISR) networks. Compared to previously studied models, SISR networks are a uniquely challenging class of image generation model from which to extract and analyze fingerprints, as they can often generate images that closely match the corresponding ground truth and thus likely leave little flexibility to embed signatures. We take SISR models as examples to investigate if the findings from the previous work on fingerprints of GAN-based networks are valid for general image generation models. We show that SISR networks with a high upscaling factor or trained using adversarial loss leave highly distinctive fingerprints, and that under certain conditions, some SISR network hyperparameters can be reverse-engineered from these fingerprints.
Abstract:Implicit Neural Representations (INRs), which encode signals such as images, videos, and 3D shapes in the weights of neural networks, are becoming increasingly popular. Among their many applications is signal compression, for which there is great interest in achieving the highest possible fidelity to the original signal subject to constraints such as neural network size, training (encoding) and inference (decoding) time. But training INRs can be a computationally expensive process, making it challenging to determine the best possible tradeoff under such constraints. Towards this goal, we present a method which predicts the encoding error that a popular INR network (SIREN) will reach, given its network hyperparameters and the signal to encode. This method is trained on a unique dataset of 300,000 SIRENs, trained across a variety of images and hyperparameters. (Dataset available here: https://huggingface.co/datasets/predict-SIREN-PSNR/COIN-collection.) Our predictive method demonstrates the feasibility of this regression problem, and allows users to anticipate the encoding error that a SIREN network will reach in milliseconds instead of minutes or longer. We also provide insights into the behavior of SIREN networks, such as why narrow SIRENs can have very high random variation in encoding error, and how the performance of SIRENs relates to JPEG compression.