Abstract:The ability for an educational game designer to understand their audience's play styles and resulting experience is an essential tool for improving their game's design. As a game is subjected to large-scale player testing, the designers require inexpensive, automated methods for categorizing patterns of player-game interactions. In this paper we present a simple, reusable process using best practices for data clustering, feasible for use within a small educational game studio. We utilize the method to analyze a real-time strategy game, processing game telemetry data to determine categories of players based on their in-game actions, the feedback they received, and their progress through the game. An interpretive analysis of these clusters results in actionable insights for the game's designers.
Abstract:Educational games are an increasingly popular teaching tool in modern classrooms. However, the development of complementary tools for teachers facilitating classroom gameplay is lacking. We present the results of a participatory design process for a teacher-facing, real-time game data dashboard. This two-phase process included a workshop to elicit teachers' requirements for such a tool, and a pilot study of our dashboard prototype. We analyze post-gameplay survey and interview data to understand teachers' experiences with the tool in terms of evidence of co-design, feasibility, and effectiveness. Our results indicate the participatory design yielded a tool both useful for and usable by teachers within the context of a real class gameplay session. We advocate for the continued development of data-driven teacher tools to improve the effectiveness of games deployed in the classroom.