Abstract:Large language models (LLMs) have become increasingly embedded in organizational workflows. This has raised concerns over their energy consumption, financial costs, and data sovereignty. While performance benchmarks often celebrate cutting-edge models, real-world deployment decisions require a broader perspective: when is a smaller, locally deployable model "good enough"? This study offers an empirical answer by evaluating eleven proprietary and open-weight LLMs across ten everyday occupational tasks, including summarizing texts, generating schedules, and drafting emails and proposals. Using a dual-LLM-based evaluation framework, we automated task execution and standardized evaluation across ten criteria related to output quality, factual accuracy, and ethical responsibility. Results show that GPT-4o delivers consistently superior performance but at a significantly higher cost and environmental footprint. Notably, smaller models like Gemma-3 and Phi-4 achieved strong and reliable results on most tasks, suggesting their viability in contexts requiring cost-efficiency, local deployment, or privacy. A cluster analysis revealed three model groups -- premium all-rounders, competent generalists, and limited but safe performers -- highlighting trade-offs between quality, control, and sustainability. Significantly, task type influenced model effectiveness: conceptual tasks challenged most models, while aggregation and transformation tasks yielded better performances. We argue for a shift from performance-maximizing benchmarks to task- and context-aware sufficiency assessments that better reflect organizational priorities. Our approach contributes a scalable method to evaluate AI models through a sustainability lens and offers actionable guidance for responsible LLM deployment in practice.
Abstract:A widespread view is that Artificial Intelligence cannot be creative. We tested this assumption by comparing human-generated ideas with those generated by six Generative Artificial Intelligence (GAI) chatbots: $alpa.\!ai$, $Copy.\!ai$, ChatGPT (versions 3 and 4), $Studio.\!ai$, and YouChat. Humans and a specifically trained AI independently assessed the quality and quantity of ideas. We found no qualitative difference between AI and human-generated creativity, although there are differences in how ideas are generated. Interestingly, 9.4 percent of humans were more creative than the most creative GAI, GPT-4. Our findings suggest that GAIs are valuable assistants in the creative process. Continued research and development of GAI in creative tasks is crucial to fully understand this technology's potential benefits and drawbacks in shaping the future of creativity. Finally, we discuss the question of whether GAIs are capable of being truly creative.