Abstract:Throughout schooling, students are tested on reading comprehension and logical reasoning. Students have developed various strategies for completing such exams, some of which are generally thought to outperform others. One such strategy involves emphasizing relative accuracy over absolute accuracy and can theoretically produce the correct answer without full knowledge of the information required to solve the question. This paper examines the effectiveness of applying such a strategy to train transfer learning models to solve reading comprehension and logical reasoning questions. The models were evaluated on the ReClor dataset, a challenging reading comprehension and logical reasoning benchmark. While previous studies targeted logical reasoning skills, we focus on a general training method and model architecture. We propose the polytuplet loss function, an extension of the triplet loss function, to ensure prioritization of learning the relative correctness of answer choices over learning the true accuracy of each choice. Our results indicate that models employing polytuplet loss outperform existing baseline models. Although polytuplet loss is a promising alternative to other contrastive loss functions, further research is required to quantify the benefits it may present.
Abstract:High-quality healthcare in the US can be cost-prohibitive for certain socioeconomic groups. In this paper, we examined data from the US Census and the CDC to determine the degree to which specific socioeconomic factors correlate with both specific and general health metrics. We employed visual analysis to find broad trends and predictive modeling to identify more complex relationships between variables. Our results indicate that certain socioeconomic factors, like income and educational attainment, are highly correlated with aggregate measures of health.