Abstract:We present a new approach to secure wireless operations using a simple dipole antenna with a dynamic unbalanced feeding structure. By rapidly switching between two states, a dynamic radiation pattern is generated, resulting in directional modulation. The current distribution on the arms of the dipole antenna are made asymmetric by the balun, which changes the relative phase between the feed currents. By rapidly switching between two mirrored states, the relative phase shift changes sign, causing the current distribution to manifest asymmetrically on the arms of the dipole antenna. The resultant far field radiation pattern is therefore asymmetric in both states, but mirrored between the two states. Rapid switching between the two states results in a far-field pattern that is dynamic in amplitude at all angles except for a narrow region of space, which is referred to as the information beam. The dynamic radiation pattern causes additional modulation on any transmitted or received signals, thereby obscuring the information at all angles outside the information beam. The proposed directional modulation technique is separate from both the antenna and the rest of the wireless system, and can thus be implemented in a black box form in wireless communications or sensing systems. We demonstrate the concept in a 1.86 GHz printed dipole antenna, demonstrating the transmission of 256-QAM signals.
Abstract:Distributed phased arrays have recently garnered interest in applications such as satellite communications and high-resolution remote sensing. High-performance coherent distributed operations such as distributed beamforming are dependent on the ability to synchronize the spatio-electrical states of the elements in the array to the order of the operational wavelength, so that coherent signal summation can be achieved at any arbitrary target destination. In this paper, we address the fundamental challenge of precise distributed array element localization to enable coherent operation, even in complex environments where the array may not be capable of directly estimating all nodal link distances. We employ a two-way time transfer technique to synchronize the nodes of the array and perform internode ranging. We implement the classical multidimensional scaling algorithm to recover a decentralized array geometry from a set of range estimates. We also establish the incomplete set of range estimates as a multivariable non-convex optimization problem, and define the differential evolution algorithm which searches the solution space to complete the set of ranges. We experimentally demonstrate wireless localization using a spectrally-sparse pulsed two-tone waveform with 40 MHz tone separation in a laboratory environment, achieving a mean localization error vector magnitude of 0.82 mm in an environment with an average link SNR of 34 dB, theoretically supporting distributed beamforming operation up to 24.3 GHz.
Abstract:We present a multi-node, multi-objective open-loop microwave distributed beamforming system based on high-accuracy wireless synchronization and localization. Distributed beamforming requires accurate coordination of the spatial and electrical states of the individual elements within the array to achieve and maintain coherent beamforming at intended destinations. Of the basic coordination aspects, time synchronization and localization of the elements are among the most critical to support beamforming of modulated waveforms to destinations in both the near-field and far-field of the array. In this work, we demonstrate multi-objective distributed beamforming from a three-node distributed phased array consisting of software-defined radios that leverages high-accuracy wireless time coordination for both time synchronization and two-dimensional localization of the elements. We use a spectrally-sparse two-tone waveform for high-accuracy inter-node range estimation combined with a linear-frequency modulated waveform to mitigate multipath interference. Localization is performed in a centralized format, where one node is designated as the origin and the remaining nodes build the array geometry relative to the origin, from which we obtain localization accuracy of less than 1 cm. We implement a near-field multi-objective beamformer based on the location estimates, which enables the simultaneous steering of a beam and a null to two receiving antennas. Multi-objective beamforming of pulsed waveforms at a carrier frequency of 2.1 GHz is demonstrated in cases where one of the nodes in the distributed antenna array is moved, and where the targets (the two receiving antennas) are moved.
Abstract:We demonstrate an imageless method of concealed contraband detection using a real-time 75 GHz rotationally dynamic antenna array. The array measures information in the two-dimensional Fourier domain and captures a set of samples that is sufficient for detecting concealed objects yet insufficient for generating full image, thereby preserving the privacy of screened subjects. The small set of Fourier samples contains sharp spatial frequency features in the Fourier domain which correspond to sharp edges of man-made objects such as handguns. We evaluate a set of classification methods: threshold-based, K-nearest neighbor, and support vector machine using radial basis function; all operating on arithmetic features directly extracted from the sampled Fourier-domain responses measured by a dynamically rotating millimeter-wave active interferometer. Noise transmitters are used to produce thermal-like radiation from scenes, enabling direct Fourier-domain sampling, while the rotational dynamics circularly sample the two-dimensional Fourier domain, capturing the sharp-edge induced responses. We experimentally demonstrate the detection of concealed metallic gun-shape object beneath clothing on a real person in a laboratory environment and achieved an accuracy and F1-score both at 0.986. The presented technique not only prevents image formation due to efficient Fourier-domain space sub-sampling but also requires only 211 ms from measurement to decision.
Abstract:We demonstrate a wireless, decentralized time-alignment method for distributed antenna arrays and distributed wireless networks that achieves picosecond-level synchronization. Distributed antenna arrays consist of spatially separated antennas that coordinate their functionality at the wavelength level to achieve coherent operations such as distributed beamforming. Accurate time alignment (synchronization) of the local clocks on each node in the array is necessary to support accurate time-delay beamforming of modulated signals. In this work we combine a consensus averaging algorithm and a high-accuracy wireless two-way time transfer method to achieve decentralized time alignment, correcting for the time-varying bias of the clocks in a method that has no central node. Internode time transfer is based on a spectrally-sparse, two-tone signal achieving near-optimal time delay accuracy. We experimentally demonstrate the approach in a wireless four-node software-defined radio system, with various network connectivity graphs. We show that within 20 iterations all the nodes achieve convergence within a bias of less than 12 ps and a standard deviation of less than 3 ps. The performance is evaluated versus the bandwidth of the two-tone waveform, which impacts the synchronization error, and versus the signal-to-noise ratio.
Abstract:We demonstrate the classification of common motions of held objects using the harmonic micro-Doppler signatures scattered from harmonic radio-frequency tags. Harmonic tags capture incident signals and retransmit at harmonic frequencies, making them easier to distinguish from clutter. We characterize the motion of tagged handheld objects via the time-varying frequency shift of the harmonic signals (harmonic Doppler). With complex micromotions of held objects, the time-frequency response manifests complex micro-Doppler signatures that can be used to classify the motions. We developed narrow-band harmonic tags at 2.4/4.8 GHz that support frequency scalability for multi-tag operation, and a harmonic radar system to transmit a 2.4 GHz continuous-wave signal and receive the scattered 4.8 GHz harmonic signal. Experiments were conducted to mimic four common motions of held objects from 35 subjects in a cluttered indoor environment. A 7-layer convolutional neural network (CNN) multi-label classifier was developed and obtained a real time classification accuracy of 94.24%, with a response time of 2 seconds per sample with a data processing latency of less than 0.5 seconds.
Abstract:We introduce a new technique for secure wireless applications using a single dynamic antenna. The dynamic antenna supports a constantly changing current distribution that generates a radiation pattern that is static in a desired direction and dynamic elsewhere, thereby imparting additional modulation on the signal and obscuring information transmitted or received outside of the secure spatial region. Dynamic currents are supported by a single feed that is switched between separate ports on a single antenna, generating two different radiation patterns. We introduce the theoretical concept by exploring an ideal complex dynamic radiation pattern that remains static in a narrow desired direction and is dynamic elsewhere. The impact on the transmission of information is analyzed, showing that the secure region narrows as the modulation order increases, and design constraints on the spatial width of the secure region as a function of modulation format are determined. We design and analyze a 2.3 GHz two-state dynamic dipole antenna and experimentally demonstrate secure wireless transmission. We show the ability to steer the secure region experimentally, and to maintain high throughput in the secure region while obscuring the information elsewhere. Our approach introduces a novel single-element technique for secure wireless applications that can be used independently from the rest of the wireless system, essentially operating as a $``$black box$"$ for an additional layer of security.
Abstract:Distributed phased arrays are comprised of separate, smaller antenna systems that coordinate with each other to support coherent beamforming towards a destination. However, due to the frequency drift and phase jitter of the oscillators, as well as the frequency and phase estimation errors induced at the nodes, there exists decoherence that degrades the beamforming process. A decentralized frequency and phase consensus (DFPC) algorithm was proposed in prior work for undirected networks in which the nodes locally share their frequencies and phases with their neighbors to reach synchronization. Kalman filtering (KF) was also integrated with DFPC (KF-DFPC) to lower the total residual phase error upon convergence. Since these DFPC-based algorithms rely on the average consensus protocol, they do not converge for directed networks. In this paper, we propose a push-sum based frequency and phase consensus (PsFPC) algorithm for the directed networks. The residual phase error of PsFPC is theoretically derived as well. Kalman filtering is also integrated with PsFPC and the resulting KF-PsFPC algorithm shows a significant reduction in the residual phase error upon convergence. KF assumes that the model parameters, i.e., the measurement noise and innovation noise covariance matrices, are known. Since they may not be known in practice, we develop an online expectation maximization (EM) based algorithm that iteratively computes the maximum likelihood (ML) estimate of the unknown matrices in an online manner. EM is integrated with KF-PsFPC to propose the EM-KF-PsFPC algorithm. Simulation results are included where the performance of the PsFPC-based algorithms is analyzed for different distributed phased arrays and is compared to other algorithms.
Abstract:Distributed antenna arrays have been proposed for many applications ranging from space-based observatories to automated vehicles. Achieving good performance in distributed antenna systems requires stringent synchronization at the wavelength and information level to ensure that the transmitted signals arrive coherently at the target, or that scattered and received signals can be appropriately processed via distributed algorithms. In this paper we address the challenge of high precision time synchronization to align the operations of elements in a distributed antenna array and to overcome time-varying bias between platforms due to oscillator drift. We use a spectrally sparse two-tone waveform, which obtains approximately optimal time estimation accuracy, in a two-way time transfer process. We also describe a technique for determining the true time delay using the ambiguous two-tone matched filter output, and we compare the time synchronization precision of the two-tone waveform with the more common linear frequency modulation (LFM) waveform. We experimentally demonstrate wireless time synchronization using a single pulse 40$\,$MHz two-tone waveform over a 90$\,$cm 5.8$\,$GHz wireless link in a laboratory setting, obtaining a timing precision of 2.26$\,$ps.
Abstract:We consider the problem of decentralized frequency and phase synchronization in distributed phased arrays via local broadcast of the node electrical states. Frequency and phase synchronization between nodes in a distributed array is necessary to support beamforming, but due to the operational dynamics of the local oscillators of the nodes, the frequencies and phases of their output signals undergo the random drift and jitter in between the update intervals. Furthermore, frequency and phase estimation errors contribute to the total phase errors, leading to a residual phase error in the array that degrades coherent operation. Recently, a classical decentralized frequency and phase synchronization algorithm based on consensus averaging was proposed with which the standard deviation of the residual phase errors upon convergence was reduced to $10^{-4}$ degrees for internode update intervals of $0.1$ ms, however this was obtained for arrays with at least $400$ nodes and a high connectivity ratio of $0.9$. In this paper, we propose a message passing based average consensus (MPAC) algorithm to improve the synchronization of the electrical states of the nodes in distributed arrays. Simulation results show that the proposed MPAC algorithm significantly reduces the residual phase errors to about $10^{-11}$ degrees, requiring only $20$ moderately connected nodes in an array. Furthermore, MPAC converges faster than the DFPC-based algorithms, particularly for the larger arrays with a moderate connectivity.