Abstract:We introduce a simple, easy to implement, and computationally efficient tropical convolutional neural network architecture that is robust against adversarial attacks. We exploit the tropical nature of piece-wise linear neural networks by embedding the data in the tropical projective torus in a single hidden layer which can be added to any model. We study the geometry of its decision boundary theoretically and show its robustness against adversarial attacks on image datasets using computational experiments.
Abstract:This note provides a simple example demonstrating that, if exact computations are allowed, the number of iterations required for the value iteration algorithm to find an optimal policy for discounted dynamic programming problems may grow arbitrarily quickly with the size of the problem. In particular, the number of iterations can be exponential in the number of actions. Thus, unlike policy iterations, the value iteration algorithm is not strongly polynomial for discounted dynamic programming.