Abstract:Infinitesimal gradient boosting is defined as the vanishing-learning-rate limit of the popular tree-based gradient boosting algorithm from machine learning (Dombry and Duchamps, 2021). It is characterized as the solution of a nonlinear ordinary differential equation in a infinite-dimensional function space where the infinitesimal boosting operator driving the dynamics depends on the training sample. We consider the asymptotic behavior of the model in the large sample limit and prove its convergence to a deterministic process. This infinite population limit is again characterized by a differential equation that depends on the population distribution. We explore some properties of this population limit: we prove that the dynamics makes the test error decrease and we consider its long time behavior.
Abstract:We define infinitesimal gradient boosting as a limit of the popular tree-based gradient boosting algorithm from machine learning. The limit is considered in the vanishing-learning-rate asymptotic, that is when the learning rate tends to zero and the number of gradient trees is rescaled accordingly. For this purpose, we introduce a new class of randomized regression trees bridging totally randomized trees and Extra Trees and using a softmax distribution for binary splitting. Our main result is the convergence of the associated stochastic algorithm and the characterization of the limiting procedure as the unique solution of a nonlinear ordinary differential equation in a infinite dimensional function space. Infinitesimal gradient boosting defines a smooth path in the space of continuous functions along which the training error decreases, the residuals remain centered and the total variation is well controlled.