Abstract:This work explores the utilization of Romanized Sinhala social media data to identify individuals at risk of depression. A machine learning-based framework is presented for the automatic screening of depression symptoms by analyzing language patterns, sentiment, and behavioural cues within a comprehensive dataset of social media posts. The research has been carried out to compare the suitability of Neural Networks over the classical machine learning techniques. The proposed Neural Network with an attention layer which is capable of handling long sequence data, attains a remarkable accuracy of 93.25% in detecting depression symptoms, surpassing current state-of-the-art methods. These findings underscore the efficacy of this approach in pinpointing individuals in need of proactive interventions and support. Mental health professionals, policymakers, and social media companies can gain valuable insights through the proposed model. Leveraging natural language processing techniques and machine learning algorithms, this work offers a promising pathway for mental health screening in the digital era. By harnessing the potential of social media data, the framework introduces a proactive method for recognizing and assisting individuals at risk of depression. In conclusion, this research contributes to the advancement of proactive interventions and support systems for mental health, thereby influencing both research and practical applications in the field.