Abstract:Modelling and forecasting real-life human behaviour using online social media is an active endeavour of interest in politics, government, academia, and industry. Since its creation in 2006, Twitter has been proposed as a potential laboratory that could be used to gauge and predict social behaviour. During the last decade, the user base of Twitter has been growing and becoming more representative of the general population. Here we analyse this user base in the context of the 2021 Mexican Legislative Election. To do so, we use a dataset of 15 million election-related tweets in the six months preceding election day. We explore different election models that assign political preference to either the ruling parties or the opposition. We find that models using data with geographical attributes determine the results of the election with better precision and accuracy than conventional polling methods. These results demonstrate that analysis of public online data can outperform conventional polling methods, and that political analysis and general forecasting would likely benefit from incorporating such data in the immediate future. Moreover, the same Twitter dataset with geographical attributes is positively correlated with results from official census data on population and internet usage in Mexico. These findings suggest that we have reached a period in time when online activity, appropriately curated, can provide an accurate representation of offline behaviour.
Abstract:In this paper we introduce the Wastewater Treatment Plant Problem, a real-world scheduling problem, and compare the performance of several tools on it. We show that, for a naive modeling, state-of-the-art SMT solvers outperform other tools ranging from mathematical programming to constraint programming. We use both real and randomly generated benchmarks. From this and similar results, we claim for the convenience of developing compiler front-ends being able to translate from constraint programming languages to the SMT-LIB standard language.