Abstract:Today, Neural Networks are the basis of breakthroughs in virtually every technical domain. Their application to accelerators has recently resulted in better performance and efficiency in these systems. At the same time, the increasing hardware failures due to the latest (shrinked) semiconductor technology needs to be addressed. Since accelerator systems are often used to back time-critical applications such as self-driving cars or medical diagnosis applications, these hardware failures must be eliminated. Our research evaluates these failures from a systemic point of view. Based on our results, we find critical results for the system reliability enhancement and we further put forth an efficient method to avoid these failures with minimal hardware overhead.
Abstract:Malware ascription is a relatively unexplored area, and it is rather difficult to attribute malware and detect authorship. In this paper, we employ various Static and Dynamic features of malicious executables to classify malware based on their family. We leverage Cuckoo Sandbox and machine learning to make progress in this research. Post analysis, classification is performed using various deep learning and machine learning algorithms. Using the features gathered from VirusTotal (static) and Cuckoo (dynamic) reports, we ran the vectorized data against Multinomial Naive Bayes, Support Vector Machine, and Bagging using Decision Trees as the base estimator. For each classifier, we tuned the hyper-parameters using exhaustive search methods. Our reports can be extremely useful in malware ascription.