Abstract:This work focuses on assessing the information-theoretic limits of scene parameter estimation in plenoptic imaging systems. A general framework to compute lower bounds on the parameter estimation error from noisy plenoptic observations is presented, with a particular focus on passive indirect imaging problems, where the observations do not contain line-of-sight information about the parameter(s) of interest. Using computer graphics rendering software to synthesize the often-complicated dependence among parameter(s) of interest and observations, i.e. the forward model, the proposed framework evaluates the Hammersley-Chapman-Robbins bound to establish lower bounds on the variance of any unbiased estimator of the unknown parameters. The effects of inexact rendering of the true forward model on the computed lower bounds are also analyzed, both theoretically and via simulations. Experimental evaluations compare the computed lower bounds with the performance of the Maximum Likelihood Estimator on a canonical object localization problem, showing that the lower bounds computed via the framework proposed here are indicative of the true underlying fundamental limits in several nominally representative scenarios.
Abstract:This paper examines fundamental error characteristics for a general class of matrix completion problems, where the matrix of interest is a product of two a priori unknown matrices, one of which is sparse, and the observations are noisy. Our main contributions come in the form of minimax lower bounds for the expected per-element squared error for this problem under under several common noise models. Specifically, we analyze scenarios where the corruptions are characterized by additive Gaussian noise or additive heavier-tailed (Laplace) noise, Poisson-distributed observations, and highly-quantized (e.g., one-bit) observations, as instances of our general result. Our results establish that the error bounds derived in (Soni et al., 2016) for complexity-regularized maximum likelihood estimators achieve, up to multiplicative constants and logarithmic factors, the minimax error rates in each of these noise scenarios, provided that the nominal number of observations is large enough, and the sparse factor has (on an average) at least one non-zero per column.



Abstract:This work examines a semi-blind single-channel source separation problem. Our specific aim is to separate one source whose local structure is approximately known, from another a priori unspecified background source, given only a single linear combination of the two sources. We propose a separation technique based on local sparse approximations along the lines of recent efforts in sparse representations and dictionary learning. A key feature of our procedure is the online learning of dictionaries (using only the data itself) to sparsely model the background source, which facilitates its separation from the partially-known source. Our approach is applicable to source separation problems in various application domains; here, we demonstrate the performance of our proposed approach via simulation on a stylized audio source separation task.




Abstract:This paper proposes a strategy for the detection and triangulation of structural anomalies in solid media. The method revolves around the construction of sparse representations of the medium's dynamic response, obtained by learning instructive dictionaries which form a suitable basis for the response data. The resulting sparse coding problem is recast as a modified dictionary learning task with additional spatial sparsity constraints enforced on the atoms of the learned dictionaries, which provides them with a prescribed spatial topology that is designed to unveil anomalous regions in the physical domain. The proposed methodology is model agnostic, i.e., it forsakes the need for a physical model and requires virtually no a priori knowledge of the structure's material properties, as all the inferences are exclusively informed by the data through the layers of information that are available in the intrinsic salient structure of the material's dynamic response. This characteristic makes the approach powerful for anomaly identification in systems with unknown or heterogeneous property distribution, for which a model is unsuitable or unreliable. The method is validated using both synthetically




Abstract:This work proposes an agnostic inference strategy for material diagnostics, conceived within the context of laser-based non-destructive evaluation methods, which extract information about structural anomalies from the analysis of acoustic wavefields measured on the structure's surface by means of a scanning laser interferometer. The proposed approach couples spatiotemporal windowing with low rank plus outlier modeling, to identify a priori unknown deviations in the propagating wavefields caused by material inhomogeneities or defects, using virtually no knowledge of the structural and material properties of the medium. This characteristic makes the approach particularly suitable for diagnostics scenarios where the mechanical and material models are complex, unknown, or unreliable. We demonstrate our approach in a simulated environment using benchmark point and line defect localization problems based on propagating flexural waves in a thin plate.