Abstract:Perceptual capabilities of artificial systems have come a long way since the advent of deep learning. These methods have proven to be effective, however they are not as efficient as their biological counterparts. Visual attention is a set of mechanisms that are employed in biological visual systems to ease computational load by only processing pertinent parts of the stimuli. This paper addresses the implementation of top-down, feature-based attention in an artificial neural network by use of externally controlled neuron gating. Our results showed a 5% increase in classification accuracy on the CIFAR-10 dataset versus a non-gated version, while adding very few parameters. Our gated model also produces more reasonable errors in predictions by drastically reducing prediction of classes that belong to a different category to the true class.
Abstract:Cognitive engineering is a multi-disciplinary field and hence it is difficult to find a review article consolidating the leading developments in the field. The in-credible pace at which technology is advancing pushes the boundaries of what is achievable in cognitive engineering. There are also differing approaches to cognitive engineering brought about from the multi-disciplinary nature of the field and the vastness of possible applications. Thus research communities require more frequent reviews to keep up to date with the latest trends. In this paper we shall dis-cuss some of the approaches to cognitive engineering holistically to clarify the reasoning behind the different approaches and to highlight their strengths and weaknesses. We shall then show how developments from seemingly disjointed views could be integrated to achieve the same goal of creating cognitive machines. By reviewing the major contributions in the different fields and showing the potential for a combined approach, this work intends to assist the research community in devising more unified methods and techniques for developing cognitive machines.