Abstract:We focus on the Source Free Object Detection (SFOD) problem, when source data is unavailable during adaptation, and the model must adapt to the unlabeled target domain. In medical imaging, several approaches have leveraged a semi-supervised student-teacher architecture to bridge domain discrepancy. Context imbalance in labeled training data and significant domain shifts between domains can lead to biased teacher models that produce inaccurate pseudolabels, degrading the student model's performance and causing a mode collapse. Class imbalance, particularly when one class significantly outnumbers another, leads to contextual bias. To tackle the problem of context bias and the significant performance drop of the student model in the SFOD setting, we introduce Grounded Teacher (GT) as a standard framework. In this study, we model contextual relationships using a dedicated relational context module and leverage it to mitigate inherent biases in the model. This approach enables us to apply augmentations to closely related classes, across and within domains, enhancing the performance of underrepresented classes while keeping the effect on dominant classes minimal. We further improve the quality of predictions by implementing an expert foundational branch to supervise the student model. We validate the effectiveness of our approach in mitigating context bias under the SFOD setting through experiments on three medical datasets supported by comprehensive ablation studies. All relevant resources, including preprocessed data, trained model weights, and code, are publicly available at this https://github.com/Tajamul21/Grounded_Teacher.
Abstract:One of the major challenges of the twenty-first century is climate change, evidenced by rising sea levels, melting glaciers, and increased storm frequency. Accurate temperature forecasting is vital for understanding and mitigating these impacts. Traditional data-driven models often use recurrent neural networks (RNNs) but face limitations in parallelization, especially with longer sequences. To address this, we introduce a novel approach based on the FocalNet Transformer architecture. Our Focal modulation Attention Encoder (FATE) framework operates in a multi-tensor format, utilizing tensorized modulation to capture spatial and temporal nuances in meteorological data. Comparative evaluations against existing transformer encoders, 3D CNNs, LSTM, and ConvLSTM models show that FATE excels at identifying complex patterns in temperature data. Additionally, we present a new labeled dataset, the Climate Change Parameter dataset (CCPD), containing 40 years of data from Jammu and Kashmir on seven climate-related parameters. Experiments with real-world temperature datasets from the USA, Canada, and Europe show accuracy improvements of 12\%, 23\%, and 28\%, respectively, over current state-of-the-art models. Our CCPD dataset also achieved a 24\% improvement in accuracy. To support reproducible research, we have released the source code and pre-trained FATE model at \href{https://github.com/Tajamul21/FATE}{https://github.com/Tajamul21/FATE}.