Abstract:This paper considers an ergodic version of the bounded velocity follower problem, assuming that the decision maker lacks knowledge of the underlying system parameters and must learn them while simultaneously controlling. We propose algorithms based on moving empirical averages and develop a framework for integrating statistical methods with stochastic control theory. Our primary result is a logarithmic expected regret rate. To achieve this, we conduct a rigorous analysis of the ergodic convergence rates of the underlying processes and the risks of the considered estimators.
Abstract:In recent years, there has been an intense debate about how learning in biological neural networks (BNNs) differs from learning in artificial neural networks. It is often argued that the updating of connections in the brain relies only on local information, and therefore a stochastic gradient-descent type optimization method cannot be used. In this paper, we study a stochastic model for supervised learning in BNNs. We show that a (continuous) gradient step occurs approximately when each learning opportunity is processed by many local updates. This result suggests that stochastic gradient descent may indeed play a role in optimizing BNNs.