Abstract:Cognitive systems generally require a human to translate a problem definition into some specification that the cognitive system can use to attempt to solve the problem or perform the task. In this paper, we illustrate that large language models (LLMs) can be utilized to map a problem class, defined in natural language, into a semi-formal specification that can then be utilized by an existing reasoning and learning system to solve instances from the problem class. We present the design of LLM-enabled cognitive task analyst agent(s). Implemented with LLM agents, this system produces a definition of problem spaces for tasks specified in natural language. LLM prompts are derived from the definition of problem spaces in the AI literature and general problem-solving strategies (Polya's How to Solve It). A cognitive system can then use the problem-space specification, applying domain-general problem solving strategies ("weak methods" such as search), to solve multiple instances of problems from the problem class. This result, while preliminary, suggests the potential for speeding cognitive systems research via disintermediation of problem formulation while also retaining core capabilities of cognitive systems, such as robust inference and online learning.
Abstract:Large language models (LLMs) offer significant promise as a knowledge source for robotic task learning. Prompt engineering has been shown to be effective for eliciting knowledge from an LLM but alone is insufficient for acquiring relevant, situationally grounded knowledge for an embodied robotic agent learning novel tasks. We describe a cognitive-agent approach that extends and complements prompt engineering, mitigating its limitations, and thus enabling a robot to acquire new task knowledge matched to its native language capabilities, embodiment, environment, and user preferences. The approach is to increase the response space of LLMs and deploy general strategies, embedded within the autonomous robot, to evaluate, repair, and select among candidate responses produced by the LLM. We describe the approach and experiments that show how a robot, by retrieving and evaluating a breadth of responses from the LLM, can achieve >75% task completion in one-shot learning without user oversight. The approach achieves 100% task completion when human oversight (such as indication of preference) is provided, while greatly reducing how much human oversight is needed.
Abstract:Language models (LLMs) offer potential as a source of knowledge for agents that need to acquire new task competencies within a performance environment. We describe efforts toward a novel agent capability that can construct cues (or "prompts") that result in useful LLM responses for an agent learning a new task. Importantly, responses must not only be "reasonable" (a measure used commonly in research on knowledge extraction from LLMs) but also specific to the agent's task context and in a form that the agent can interpret given its native language capacities. We summarize a series of empirical investigations of prompting strategies and evaluate responses against the goals of targeted and actionable responses for task learning. Our results demonstrate that actionable task knowledge can be obtained from LLMs in support of online agent task learning.
Abstract:Online autonomous agents are able to draw on a wide variety of potential sources of task knowledge; however current approaches invariably focus on only one or two. Here we investigate the challenges and impact of exploiting diverse knowledge sources to learn, in one-shot, new tasks for a simulated household mobile robot. The resulting agent, developed in the Soar cognitive architecture, uses the following sources of domain and task knowledge: interaction with the environment, task execution and planning knowledge, human natural language instruction, and responses retrieved from a large language model (GPT-3). We explore the distinct contributions of these knowledge sources and evaluate the performance of different combinations in terms of learning correct task knowledge, human workload, and computational costs. The results from combining all sources demonstrate that integration improves one-shot task learning overall in terms of computational costs and human workload.
Abstract:Language models (LMs) are sentence-completion engines trained on massive corpora. LMs have emerged as a significant breakthrough in natural-language processing, providing capabilities that go far beyond sentence completion including question answering, summarization, and natural-language inference. While many of these capabilities have potential application to cognitive systems, exploiting language models as a source of task knowledge, especially for task learning, offers significant, near-term benefits. We introduce language models and the various tasks to which they have been applied and then review methods of knowledge extraction from language models. The resulting analysis outlines both the challenges and opportunities for using language models as a new knowledge source for cognitive systems. It also identifies possible ways to improve knowledge extraction from language models using the capabilities provided by cognitive systems. Central to success will be the ability of a cognitive agent to itself learn an abstract model of the knowledge implicit in the LM as well as methods to extract high-quality knowledge effectively and efficiently. To illustrate, we introduce a hypothetical robot agent and describe how language models could extend its task knowledge and improve its performance and the kinds of knowledge and methods the agent can use to exploit the knowledge within a language model.