Abstract:The ability to accurately classify disease subtypes is of vital importance, especially in oncology where this capability could have a life saving impact. Here we report a classification between two subtypes of non-small cell lung cancer, namely Adeno- carcinoma vs Squamous cell carcinoma. The data consists of approximately 20,000 gene expression values for each of 104 patients. The data was curated from [1] [2]. We used an amalgamation of classical and and quantum machine learning models to successfully classify these patients. We utilized feature selection methods based on univariate statistics in addition to XGBoost [3]. A novel and proprietary data representation method developed by one of the authors called QCrush was also used as it was designed to incorporate a maximal amount of information under the size constraints of the D-Wave quantum annealing computer. The machine learning was performed by a Quantum Boltzmann Machine. This paper will report our results, the various classical methods, and the quantum machine learning approach we utilized.