Abstract:Existing vision-language models (VLMs) treat text descriptions as a unit, confusing individual concepts in a prompt and impairing visual semantic matching and reasoning. An important aspect of reasoning in logic and language is negations. This paper highlights the limitations of popular VLMs such as CLIP, at understanding the implications of negations, i.e., the effect of the word "not" in a given prompt. To enable evaluation of VLMs on fluent prompts with negations, we present CC-Neg, a dataset containing 228,246 images, true captions and their corresponding negated captions. Using CC-Neg along with modifications to the contrastive loss of CLIP, our proposed CoN-CLIP framework, has an improved understanding of negations. This training paradigm improves CoN-CLIP's ability to encode semantics reliably, resulting in 3.85% average gain in top-1 accuracy for zero-shot image classification across 8 datasets. Further, CoN-CLIP outperforms CLIP on challenging compositionality benchmarks such as SugarCREPE by 4.4%, showcasing emergent compositional understanding of objects, relations, and attributes in text. Overall, our work addresses a crucial limitation of VLMs by introducing a dataset and framework that strengthens semantic associations between images and text, demonstrating improved large-scale foundation models with significantly reduced computational cost, promoting efficiency and accessibility.