Abstract:Query-focused tabular summarization is an emerging task in table-to-text generation that synthesizes a summary response from tabular data based on user queries. Traditional transformer-based approaches face challenges due to token limitations and the complexity of reasoning over large tables. To address these challenges, we introduce DETQUS (Decomposition-Enhanced Transformers for QUery-focused Summarization), a system designed to improve summarization accuracy by leveraging tabular decomposition alongside a fine-tuned encoder-decoder model. DETQUS employs a large language model to selectively reduce table size, retaining only query-relevant columns while preserving essential information. This strategy enables more efficient processing of large tables and enhances summary quality. Our approach, equipped with table-based QA model Omnitab, achieves a ROUGE-L score of 0.4437, outperforming the previous state-of-the-art REFACTOR model (ROUGE-L: 0.422). These results highlight DETQUS as a scalable and effective solution for query-focused tabular summarization, offering a structured alternative to more complex architectures.
Abstract:Emotion Classification based on text is a task with many applications which has received growing interest in recent years. This paper presents a preliminary study with the goal to help researchers and practitioners gain insight into relatively new datasets as well as emotion classification in general. We focus on three datasets that were recently presented in the related literature, and we explore the performance of traditional as well as state-of-the-art deep learning models in the presence of different characteristics in the data. We also explore the use of data augmentation in order to improve performance. Our experimental work shows that state-of-the-art models such as RoBERTa perform the best for all cases. We also provide observations and discussion that highlight the complexity of emotion classification in these datasets and test out the applicability of the models to actual social media posts we collected and labeled.