Abstract:Next-generation wireless networks will deploy UAVs dynamically as aerial base stations (UAV-BSs) to boost the wireless network coverage in the out of reach areas. To provide an efficient service in stochastic environments, the optimal number of UAV-BSs, their locations, and trajectories must be specified appropriately for different scenarios. Such deployment requires an intelligent decision-making mechanism that can deal with various variables at different times. This paper proposes a multi UAV-BS deployment model for smart farming, formulated as a Multi-Criteria Decision Making (MCDM) method to find the optimal number of UAV-BSs to monitor animals' behavior. This model considers the effect of UAV-BSs' signal interference and path loss changes caused by users' mobility to maximize the system's efficiency. To avoid collision among UAV-BSs, we split the considered area into several clusters, each covered by a UAV-BS. Our simulation results suggest up to 11x higher deployment efficiency than the benchmark clustering algorithm.
Abstract:Next-generation mobile networks have proposed the integration of Unmanned Aerial Vehicles (UAVs) as aerial base stations (UAV-BS) to serve ground nodes. Despite having advantages of using UAV-BSs, their dependence on the on-board, limited-capacity battery hinders their service continuity. Shorter trajectories can save flying energy, however, UAV-BSs must also serve nodes based on their service priority since nodes' service requirements are not always the same. In this paper, we present an energy-efficient trajectory optimization for a UAV assisted IoT system in which the UAV-BS considers the IoT nodes' service priorities in making its movement decisions. We solve the trajectory optimization problem using Double Q-Learning algorithm. Simulation results reveal that the Q-Learning based optimized trajectory outperforms a benchmark algorithm, namely Greedily-served algorithm, in terms of reducing the average energy consumption of the UAV-BS as well as the service delay for high priority nodes.