Abstract:We propose a novel concept of dual and integrated latent topologies (DITTO in short) for implicit 3D reconstruction from noisy and sparse point clouds. Most existing methods predominantly focus on single latent type, such as point or grid latents. In contrast, the proposed DITTO leverages both point and grid latents (i.e., dual latent) to enhance their strengths, the stability of grid latents and the detail-rich capability of point latents. Concretely, DITTO consists of dual latent encoder and integrated implicit decoder. In the dual latent encoder, a dual latent layer, which is the key module block composing the encoder, refines both latents in parallel, maintaining their distinct shapes and enabling recursive interaction. Notably, a newly proposed dynamic sparse point transformer within the dual latent layer effectively refines point latents. Then, the integrated implicit decoder systematically combines these refined latents, achieving high-fidelity 3D reconstruction and surpassing previous state-of-the-art methods on object- and scene-level datasets, especially in thin and detailed structures.
Abstract:Among various interactions between humans, such as eye contact and gestures, physical interactions by contact can act as an essential moment in understanding human behaviors. Inspired by this fact, given a 3D partner human with the desired interaction label, we introduce a new task of 3D human generation in terms of physical contact. Unlike previous works of interacting with static objects or scenes, a given partner human can have diverse poses and different contact regions according to the type of interaction. To handle this challenge, we propose a novel method of generating interactive 3D humans for a given partner human based on a guided diffusion framework. Specifically, we newly present a contact prediction module that adaptively estimates potential contact regions between two input humans according to the interaction label. Using the estimated potential contact regions as complementary guidances, we dynamically enforce ContactGen to generate interactive 3D humans for a given partner human within a guided diffusion model. We demonstrate ContactGen on the CHI3D dataset, where our method generates physically plausible and diverse poses compared to comparison methods.