Abstract:This paper presents a solution to the challenges faced by contrastive learning in sequential recommendation systems. In particular, it addresses the issue of false negative, which limits the effectiveness of recommendation algorithms. By introducing an advanced approach to contrastive learning, the proposed method improves the quality of item embeddings and mitigates the problem of falsely categorizing similar instances as dissimilar. Experimental results demonstrate performance enhancements compared to existing systems. The flexibility and applicability of the proposed approach across various recommendation scenarios further highlight its value in enhancing sequential recommendation systems.
Abstract:Along with the exponential growth of online platforms and services, recommendation systems have become essential for identifying relevant items based on user preferences. The domain of sequential recommendation aims to capture evolving user preferences over time. To address dynamic preference, various contrastive learning methods have been proposed to target data sparsity, a challenge in recommendation systems due to the limited user-item interactions. In this paper, we are the first to apply the Fisher-Merging method to Sequential Recommendation, addressing and resolving practical challenges associated with it. This approach ensures robust fine-tuning by merging the parameters of multiple models, resulting in improved overall performance. Through extensive experiments, we demonstrate the effectiveness of our proposed methods, highlighting their potential to advance the state-of-the-art in sequential learning and recommendation systems.