Abstract:This paper presents a method for analysis of the vote space created from the local features extraction process in a multi-detection system. The method is opposed to the classic clustering approach and gives a high level of control over the clusters composition for further verification steps. Proposed method comprises of the graphical vote space presentation, the proposition generation, the two-pass iterative vote aggregation and the cascade filters for verification of the propositions. Cascade filters contain all of the minor algorithms needed for effective object detection verification. The new approach does not have the drawbacks of the classic clustering approaches and gives a substantial control over process of detection. Method exhibits an exceptionally high detection rate in conjunction with a low false detection chance in comparison to alternative methods.
Abstract:This paper presents a framework designed for the multi-object detection purposes and adjusted for the application of product search on the market shelves. The framework uses a single feedback loop and a pattern resizing mechanism to demonstrate the top effectiveness of the state-of-the-art local features. A high detection rate with a low false detection chance can be achieved with use of only one pattern per object and no manual parameters adjustments. The method incorporates well known local features and a basic matching process to create a reliable voting space. Further steps comprise of metric transformations, graphical vote space representation, two-phase vote aggregation process and a cascade of verifying filters.