Abstract:The use of Neural Networks (NNs) for sensitive data processing is becoming increasingly popular, raising concerns about data privacy and security. Homomorphic Encryption (HE) has the potential to be used as a solution to preserve data privacy in NN. This study provides a comprehensive analysis on the use of HE for NN training and classification, focusing on the techniques and strategies used to enhance data privacy and security. The current state-of-the-art in HE for NNs is analysed, and the challenges and limitations that need to be addressed to make it a reliable and efficient approach for privacy preservation are identified. Also, the different categories of HE schemes and their suitability for NNs are discussed, as well as the techniques used to optimize the accuracy and efficiency of encrypted models. The review reveals that HE has the potential to provide strong data privacy guarantees for NNs, but several challenges need to be addressed, such as limited support for advanced NN operations, scalability issues, and performance trade-offs.