Abstract:Human brain performs remarkably well in segregating a particular speaker from interfering speakers in a multi-speaker scenario. It has been recently shown that we can quantitatively evaluate the segregation capability by modelling the relationship between the speech signals present in an auditory scene and the cortical signals of the listener measured using electroencephalography (EEG). This has opened up avenues to integrate neuro-feedback into hearing aids whereby the device can infer user's attention and enhance the attended speaker. Commonly used algorithms to infer the auditory attention are based on linear systems theory where the speech cues such as envelopes are mapped on to the EEG signals. Here, we present a joint convolutional neural network (CNN) - long short-term memory (LSTM) model to infer the auditory attention. Our joint CNN-LSTM model takes the EEG signals and the spectrogram of the multiple speakers as inputs and classifies the attention to one of the speakers. We evaluated the reliability of our neural network using three different datasets comprising of 61 subjects where, each subject undertook a dual-speaker experiment. The three datasets analysed corresponded to speech stimuli presented in three different languages namely German, Danish and Dutch. Using the proposed joint CNN-LSTM model, we obtained a median decoding accuracy of 77.2% at a trial duration of three seconds. Furthermore, we evaluated the amount of sparsity that our model can tolerate by means of magnitude pruning and found that the model can tolerate up to 50% sparsity without substantial loss of decoding accuracy.
Abstract:Attentive listening in a multispeaker environment such as a cocktail party requires suppression of the interfering speakers and the noise around. People with normal hearing perform remarkably well in such situations. Analysis of the cortical signals using electroencephalography (EEG) has revealed that the EEG signals track the envelope of the attended speech stronger than that of the interfering speech. This has enabled the development of algorithms that can decode the selective attention of a listener in controlled experimental settings. However, often these algorithms require longer trial duration and computationally expensive calibration to obtain a reliable inference of attention. In this paper, we present a novel framework to decode the attention of a listener within trial durations of the order of two seconds. It comprises of three modules: 1) Dynamic estimation of the temporal response functions (TRF) in every trial using a sequential linear minimum mean squared error (LMMSE) estimator, 2) Extract the N1-P2 peak of the estimated TRF that serves as a marker related to the attentional state and 3) Obtain a probabilistic measure of the attentional state using a support vector machine followed by a logistic regression. The efficacy of the proposed decoding framework was evaluated using EEG data collected from 27 subjects. The total number of electrodes required to infer the attention was four: One for the signal estimation, one for the noise estimation and the other two being the reference and the ground electrodes. Our results make further progress towards the realization of neuro-steered hearing aids.