Abstract:This paper presents an overview of rule-based system for automatic accentuation and phonemic transcription of Russian texts for speech connected tasks, such as Automatic Speech Recognition (ASR). Two parts of the developed system, accentuation and transcription, use different approaches to achieve correct phonemic representations of input phrases. Accentuation is based on "Grammatical dictionary of the Russian language" of A.A. Zaliznyak and wiktionary corpus. To distinguish homographs, the accentuation system also utilises morphological information of the sentences based on Recurrent Neural Networks (RNN). Transcription algorithms apply the rules presented in the monograph of B.M. Lobanov and L.I. Tsirulnik "Computer Synthesis and Voice Cloning". The rules described in the present paper are implemented in an open-source module, which can be of use to any scientific study connected to ASR or Speech To Text (STT) tasks. Automatically marked up text annotations of the Russian Voxforge database were used as training data for an acoustic model in CMU Sphinx. The resulting acoustic model was evaluated on cross-validation, mean Word Accuracy being 71.2%. The developed toolkit is written in the Python language and is accessible on GitHub for any researcher interested.
Abstract:This paper attempts to analyze the effectiveness of deep learning for tabular data processing. It is believed that decision trees and their ensembles is the leading method in this domain, and deep neural networks must be content with computer vision and so on. But the deep neural network is a framework for building gradient-based hierarchical representations, and this key feature should be able to provide the best processing of generic structured (tabular) data, not just image matrices and audio spectrograms. This problem is considered through the prism of the Weather Prediction track in the Yandex Shifts challenge (in other words, the Yandex Shifts Weather task). This task is a variant of the classical tabular data regression problem. It is also connected with another important problem: generalization and uncertainty in machine learning. This paper proposes an end-to-end algorithm for solving the problem of regression with uncertainty on tabular data, which is based on the combination of four ideas: 1) deep ensemble of self-normalizing neural networks, 2) regression as parameter estimation of the Gaussian target error distribution, 3) hierarchical multitask learning, and 4) simple data preprocessing. Three modifications of the proposed algorithm form the top-3 leaderboard of the Yandex Shifts Weather challenge respectively. This paper considers that this success has occurred due to the fundamental properties of the deep learning algorithm, and tries to prove this.