Abstract:The escalating frequency of intrusions in networked systems has spurred the exploration of new research avenues in devising artificial intelligence (AI) techniques for intrusion detection systems (IDS). Various AI techniques have been used to automate network intrusion detection tasks, yet each model possesses distinct strengths and weaknesses. Selecting the optimal model for a given dataset can pose a challenge, necessitating the exploration of ensemble methods to enhance generalization and applicability in network intrusion detection. This paper addresses this gap by conducting a comprehensive evaluation of diverse individual models and both simple and advanced ensemble methods for network IDS. We introduce an ensemble learning framework tailored for assessing individual models and ensemble methods in network intrusion detection tasks. Our framework encompasses the loading of input datasets, training of individual models and ensemble methods, and the generation of evaluation metrics. Furthermore, we incorporate all features across individual models and ensemble techniques. The study presents results for our framework, encompassing 14 methods, including various bagging, stacking, blending, and boosting techniques applied to multiple base learners such as decision trees, neural networks, and among others. We evaluate the framework using two distinct network intrusion datasets, RoEduNet-SIMARGL2021 and CICIDS-2017, each possessing unique characteristics. Additionally, we categorize AI models based on their performances on our evaluation metrics and via their confusion matrices. Our assessment demonstrates the efficacy of learning across most setups explored in this study. Furthermore, we contribute to the community by releasing our source codes, providing a foundational ensemble learning framework for network intrusion detection.