Abstract:Opinion mining on social media posts has become more and more popular. Users often express their opinion on a topic not only with words but they also use image symbols such as emoticons and emoji. In this paper, we investigate the effect of emoji-based features in opinion classification of Uzbek texts, and more specifically movie review comments from YouTube. Several classification algorithms are tested, and feature ranking is performed to evaluate the discriminative ability of the emoji-based features.
Abstract:This chapter presents a methodology for diagnosis of pigmented skin lesions using convolutional neural networks. The architecture is based on convolu-tional neural networks and it is evaluated using new CNN models as well as re-trained modification of pre-existing CNN models were used. The experi-mental results showed that CNN models pre-trained on big datasets for gen-eral purpose image classification when re-trained in order to identify skin le-sion types offer more accurate results when compared to convolutional neural network models trained explicitly from the dermatoscopic images. The best performance was achieved by re-training a modified version of ResNet-50 convolutional neural network with accuracy equal to 93.89%. Analysis on skin lesion pathology type was also performed with classification accuracy for melanoma and basal cell carcinoma being equal to 79.13% and 82.88%, respectively.
Abstract:Smart meters are used to measure the energy consumption of households. Specifically, within the energy consumption task smart meter have been used for load forecasting, reduction of consumer bills as well as reduction of grid distortions. Except energy consumption smart meters can be used to disaggregate energy consumption on device level. In this paper we investigate the potential of identifying the multimedia content played by a TV or monitor device using the central house's smart meter measuring the aggregated energy consumption from all working appliances of the household. The proposed architecture is based on elastic matching of aggregated energy signal frames with 20 reference TV channel signals. Different elastic matching algorithms were used with the best achieved video content identification accuracy being 93.6% using the MVM algorithm.