Abstract:The human brain provides a range of functions such as expressing emotions, controlling the rate of breathing, etc., and its study has attracted the interest of scientists for many years. As machine learning models become more sophisticated, and bio-metric data becomes more readily available through new non-invasive technologies, it becomes increasingly possible to gain access to interesting biometric data that could revolutionize Human-Computer Interaction. In this research, we propose a method to assess and quantify human attention levels and their effects on learning. In our study, we employ a brain computer interface (BCI) capable of detecting brain wave activity and displaying the corresponding electroencephalograms (EEG). We train recurrent neural networks (RNNS) to identify the type of activity an individual is performing.
Abstract:We present DCSVM, an efficient algorithm for multi-class classification using Support Vector Machines. DCSVM is a divide and conquer algorithm which relies on data sparsity in high dimensional space and performs a smart partitioning of the whole training data set into disjoint subsets that are easily separable. A single prediction performed between two partitions eliminates at once one or more classes in one partition, leaving only a reduced number of candidate classes for subsequent steps. The algorithm continues recursively, reducing the number of classes at each step, until a final binary decision is made between the last two classes left in the competition. In the best case scenario, our algorithm makes a final decision between $k$ classes in $O(\log k)$ decision steps and in the worst case scenario DCSVM makes a final decision in $k-1$ steps, which is not worse than the existent techniques.