Abstract:Deep metric learning (DML) aims to automatically construct task-specific distances or similarities of data, resulting in a low-dimensional representation. Several significant metric-learning methods have been proposed. Nonetheless, no approach guarantees the preservation of the ordinal nature of the original data in a low-dimensional space. Ordinal data are ubiquitous in real-world problems, such as the severity of symptoms in biomedical cases, production quality in manufacturing, rating level in businesses, and aging level in face recognition. This study proposes a novel angular triangle distance (ATD) and ordinal triplet network (OTD) to obtain an accurate and meaningful embedding space representation for ordinal data. The ATD projects the ordinal relation of data in the angular space, whereas the OTD learns its ordinal projection. We also demonstrated that our new distance measure satisfies the distance metric properties mathematically. The proposed method was assessed using real-world data with an ordinal nature, such as biomedical, facial, and hand-gestured images. Extensive experiments have been conducted, and the results show that our proposed method not only semantically preserves the ordinal nature but is also more accurate than existing DML models. Moreover, we also demonstrate that our proposed method outperforms the state-of-the-art ordinal metric learning method.
Abstract:With the emergence of deep learning, metric learning has gained significant popularity in numerous machine learning tasks dealing with complex and large-scale datasets, such as information retrieval, object recognition and recommendation systems. Metric learning aims to maximize and minimize inter- and intra-class similarities. However, existing models mainly rely on distance measures to obtain a separable embedding space and implicitly maximize the intra-class similarity while neglecting the inter-class relationship. We argue that to enable metric learning as a service for high-performance deep learning applications, we should also wisely deal with inter-class relationships to obtain a more advanced and meaningful embedding space representation. In this paper, a novel metric learning is presented as a service methodology that incorporates covariance to signify the direction of the linear relationship between data points in an embedding space. Unlike conventional metric learning, our covariance-embedding-enhanced approach enables metric learning as a service to be more expressive for computing similar or dissimilar measures and can capture positive, negative, or neutral relationships. Extensive experiments conducted using various benchmark datasets, including natural, biomedical, and facial images, demonstrate that the proposed model as a service with covariance-embedding optimizations can obtain higher-quality, more separable, and more expressive embedding representations than existing models.
Abstract:Binary classification (BC) is a practical task that is ubiquitous in real-world problems, such as distinguishing healthy and unhealthy objects in biomedical diagnostics and defective and non-defective products in manufacturing inspections. Nonetheless, fully annotated data are commonly required to effectively solve this problem, and their collection by domain experts is a tedious and expensive procedure. In contrast to BC, several significant semi-supervised learning techniques that heavily rely on stochastic data augmentation techniques have been devised for solving multi-class classification. In this study, we demonstrate that the stochastic data augmentation technique is less suitable for solving typical BC problems because it can omit crucial features that strictly distinguish between positive and negative samples. To address this issue, we propose a new learning representation to solve the BC problem using a few labels with a random k-pair cross-distance learning mechanism. First, by harnessing a few labeled samples, the encoder network learns the projection of positive and negative samples in angular spaces to maximize and minimize their inter-class and intra-class distances, respectively. Second, the classifier learns to discriminate between positive and negative samples using on-the-fly labels generated based on the angular space and labeled samples to solve BC tasks. Extensive experiments were conducted using four real-world publicly available BC datasets. With few labels and without any data augmentation techniques, the proposed method outperformed state-of-the-art semi-supervised and self-supervised learning methods. Moreover, with 10% labeling, our semi-supervised classifier could obtain competitive accuracy compared with a fully supervised setting.