Wire Communications and Information Technology Laboratory, Dept. of Electrical and Computer Engineering, University of Patras, Patras, Greece
Abstract:Fatigue modeling is essential for motion synthesis tasks to model human motions under fatigued conditions and biomechanical engineering applications, such as investigating the variations in movement patterns and posture due to fatigue, defining injury risk mitigation and prevention strategies, formulating fatigue minimization schemes and creating improved ergonomic designs. Nevertheless, employing data-driven methods for synthesizing the impact of fatigue on motion, receives little to no attention in the literature. In this work, we present Fatigue-PINN, a deep learning framework based on Physics-Informed Neural Networks, for modeling fatigued human movements, while providing joint-specific fatigue configurations for adaptation and mitigation of motion artifacts on a joint level, resulting in more realistic animations. To account for muscle fatigue, we simulate the fatigue-induced fluctuations in the maximum exerted joint torques by leveraging a PINN adaptation of the Three-Compartment Controller model to exploit physics-domain knowledge for improving accuracy. This model also introduces parametric motion alignment with respect to joint-specific fatigue, hence avoiding sharp frame transitions. Our results indicate that Fatigue-PINN accurately simulates the effects of externally perceived fatigue on open-type human movements being consistent with findings from real-world experimental fatigue studies. Since fatigue is incorporated in torque space, Fatigue-PINN provides an end-to-end encoder-decoder-like architecture, to ensure transforming joint angles to joint torques and vice-versa, thus, being compatible with motion synthesis frameworks operating on joint angles.
Abstract:Artificial intelligence, machine learning, and deep learning as a service have become the status quo for many industries, leading to the widespread deployment of models that handle sensitive data. Well-performing models, the industry seeks, usually rely on a large volume of training data. However, the use of such data raises serious privacy concerns due to the potential risks of leaks of highly sensitive information. One prominent threat is the Membership Inference Attack, where adversaries attempt to deduce whether a specific data point was used in a model's training process. An adversary's ability to determine an individual's presence represents a significant privacy threat, especially when related to a group of users sharing sensitive information. Hence, well-designed privacy-preserving machine learning solutions are critically needed in the industry. In this work, we compare the effectiveness of L2 regularization and differential privacy in mitigating Membership Inference Attack risks. Even though regularization techniques like L2 regularization are commonly employed to reduce overfitting, a condition that enhances the effectiveness of Membership Inference Attacks, their impact on mitigating these attacks has not been systematically explored.