Abstract:With growing concerns surrounding privacy and regulatory compliance, the concept of machine unlearning has gained prominence, aiming to selectively forget or erase specific learned information from a trained model. In response to this critical need, we introduce a novel approach called Attack-and-Reset for Unlearning (ARU). This algorithm leverages meticulously crafted adversarial noise to generate a parameter mask, effectively resetting certain parameters and rendering them unlearnable. ARU outperforms current state-of-the-art results on two facial machine-unlearning benchmark datasets, MUFAC and MUCAC. In particular, we present the steps involved in attacking and masking that strategically filter and re-initialize network parameters biased towards the forget set. Our work represents a significant advancement in rendering data unexploitable to deep learning models through parameter re-initialization, achieved by harnessing adversarial noise to craft a mask.
Abstract:Unusually, intensive heavy rain hit the central region of Korea on August 8, 2022. Many low-lying areas were submerged, so traffic and life were severely paralyzed. It was the critical damage caused by torrential rain for just a few hours. This event reminded us of the need for a more reliable regional precipitation nowcasting method. In this paper, we bring cycle-consistent adversarial networks (CycleGAN) into the time-series domain and extend it to propose a reliable model for regional precipitation nowcasting. The proposed model generates composite hybrid surface rainfall (HSR) data after 10 minutes from the present time. Also, the proposed model provides a reliable prediction of up to 2 hours with a gradual extension of the training time steps. Unlike the existing complex nowcasting methods, the proposed model does not use recurrent neural networks (RNNs) and secures temporal causality via sequential training in the cycle. Our precipitation nowcasting method outperforms convolutional long short-term memory (ConvLSTM) based on RNNs. Additionally, we demonstrate the superiority of our approach by qualitative and quantitative comparisons against MAPLE, the McGill algorithm for precipitation nowcasting by lagrangian extrapolation, one of the real quantitative precipitation forecast (QPF) models.
Abstract:How can we efficiently compress a model while maintaining its performance? Knowledge Distillation (KD) is one of the widely known methods for model compression. In essence, KD trains a smaller student model based on a larger teacher model and tries to retain the teacher model's level of performance as much as possible. However, the existing KD methods suffer from the following limitations. First, since the student model is small in absolute size, it inherently lacks model complexity. Second, the absence of an initial guide for the student model makes it difficult for the student to imitate the teacher model to its fullest. Conventional KD methods yield low performance due to these limitations. In this paper, we propose Parameter-efficient and accurate Knowledge Distillation (Pea-KD), a novel approach to KD. Pea-KD consists of two main parts: Shuffled Parameter Sharing (SPS) and Pretraining with Teacher's Predictions (PTP). Using this combination, we are capable of alleviating the KD's limitations. SPS is a new parameter sharing method that allows greater model complexity for the student model. PTP is a KD-specialized initialization method, which can act as a good initial guide for the student. When combined, this method yields significant increase in student model's performance. Experiments conducted on different datasets and tasks show that the proposed approach improves the student model's performance by 4.4% on average in four GLUE tasks, outperforming existing KD baselines by significant margins.