Abstract:In news recommendation systems, reducing popularity bias is essential for delivering accurate and diverse recommendations. This paper presents POPK, a new method that uses temporal-counterfactual analysis to mitigate the influence of popular news articles. By asking, "What if, at a given time $t$, a set of popular news articles were competing for the user's attention to be clicked?", POPK aims to improve recommendation accuracy and diversity. We tested POPK on three different language datasets (Japanese, English, and Norwegian) and found that it successfully enhances traditional methods. POPK offers flexibility for customization to enhance either accuracy or diversity, alongside providing distinct ways of measuring popularity. We argue that popular news articles always compete for attention, even if they are not explicitly present in the user's impression list. POPK systematically eliminates the implicit influence of popular news articles during each training step. We combine counterfactual reasoning with a temporal approach to adjust the negative sample space, refining understanding of user interests. Our findings underscore how POPK effectively enhances the accuracy and diversity of recommended articles while also tailoring the approach to specific needs.
Abstract:In recent years, journalists have expressed concerns about the increasing trend of news article avoidance, especially within specific domains. This issue has been exacerbated by the rise of recommender systems. Our research indicates that recommender systems should consider avoidance as a fundamental factor. We argue that news articles can be characterized by three principal elements: exposure, relevance, and avoidance, all of which are closely interconnected. To address these challenges, we introduce AWRS, an Avoidance-Aware Recommender System. This framework incorporates avoidance awareness when recommending news, based on the premise that news article avoidance conveys significant information about user preferences. Evaluation results on three news datasets in different languages (English, Norwegian, and Japanese) demonstrate that our method outperforms existing approaches.