Abstract:Advances in robotic control and sensing have propelled the rise of automated scientific laboratories capable of high-throughput experiments. However, automated scientific laboratories are currently limited by human intuition in their ability to efficiently design and interpret experiments in high-dimensional spaces, throttling scientific discovery. We present AutoSciLab, a machine learning framework for driving autonomous scientific experiments, forming a surrogate researcher purposed for scientific discovery in high-dimensional spaces. AutoSciLab autonomously follows the scientific method in four steps: (i) generating high-dimensional experiments (x \in R^D) using a variational autoencoder (ii) selecting optimal experiments by forming hypotheses using active learning (iii) distilling the experimental results to discover relevant low-dimensional latent variables (z \in R^d, with d << D) with a 'directional autoencoder' and (iv) learning a human interpretable equation connecting the discovered latent variables with a quantity of interest (y = f(z)), using a neural network equation learner. We validate the generalizability of AutoSciLab by rediscovering a) the principles of projectile motion and b) the phase transitions within the spin-states of the Ising model (NP-hard problem). Applying our framework to an open-ended nanophotonics challenge, AutoSciLab uncovers a fundamentally novel method for directing incoherent light emission that surpasses the current state-of-the-art (Iyer et al. 2023b, 2020).
Abstract:We developed an autonomous experimentation platform to accelerate interpretable scientific discovery in ultrafast nanophotonics, targeting a novel method to steer spontaneous emission from reconfigurable semiconductor metasurfaces. Controlling spontaneous emission is crucial for clean-energy solutions in illumination, thermal radiation engineering, and remote sensing. Despite the potential of reconfigurable semiconductor metasurfaces with embedded sources for spatiotemporal control, achieving arbitrary far-field control remains challenging. Here, we present a self-driving lab (SDL) platform that addresses this challenge by discovering the governing equations for predicting the far-field emission profile from light-emitting metasurfaces. We discover that both the spatial gradient (grating-like) and the curvature (lens-like) of the local refractive index are key factors in steering spontaneous emission. The SDL employs a machine-learning framework comprising: (1) a variational autoencoder for generating complex spatial refractive index profiles, (2) an active learning agent for guiding experiments with real-time closed-loop feedback, and (3) a neural network-based equation learner to uncover structure-property relationships. The SDL demonstrated a four-fold enhancement in peak emission directivity (up to 77%) over a 72{\deg} field of view within ~300 experiments. Our findings reveal that combinations of positive gratings and lenses are as effective as negative lenses and gratings for all emission angles, offering a novel strategy for controlling spontaneous emission beyond conventional Fourier optics.