Abstract:Masked face recognition (MFR) has emerged as a critical domain in biometric identification, especially by the global COVID-19 pandemic, which introduced widespread face masks. This survey paper presents a comprehensive analysis of the challenges and advancements in recognising and detecting individuals with masked faces, which has seen innovative shifts due to the necessity of adapting to new societal norms. Advanced through deep learning techniques, MFR, along with Face Mask Recognition (FMR) and Face Unmasking (FU), represent significant areas of focus. These methods address unique challenges posed by obscured facial features, from fully to partially covered faces. Our comprehensive review delves into the various deep learning-based methodologies developed for MFR, FMR, and FU, highlighting their distinctive challenges and the solutions proposed to overcome them. Additionally, we explore benchmark datasets and evaluation metrics specifically tailored for assessing performance in MFR research. The survey also discusses the substantial obstacles still facing researchers in this field and proposes future directions for the ongoing development of more robust and effective masked face recognition systems. This paper serves as an invaluable resource for researchers and practitioners, offering insights into the evolving landscape of face recognition technologies in the face of global health crises and beyond.
Abstract:Optical character recognition (OCR) is a vital process that involves the extraction of handwritten or printed text from scanned or printed images, converting it into a format that can be understood and processed by machines. This enables further data processing activities such as searching and editing. The automatic extraction of text through OCR plays a crucial role in digitizing documents, enhancing productivity, improving accessibility, and preserving historical records. This paper seeks to offer an exhaustive review of contemporary applications, methodologies, and challenges associated with Arabic Optical Character Recognition (OCR). A thorough analysis is conducted on prevailing techniques utilized throughout the OCR process, with a dedicated effort to discern the most efficacious approaches that demonstrate enhanced outcomes. To ensure a thorough evaluation, a meticulous keyword-search methodology is adopted, encompassing a comprehensive analysis of articles relevant to Arabic OCR, including both backward and forward citation reviews. In addition to presenting cutting-edge techniques and methods, this paper critically identifies research gaps within the realm of Arabic OCR. By highlighting these gaps, we shed light on potential areas for future exploration and development, thereby guiding researchers toward promising avenues in the field of Arabic OCR. The outcomes of this study provide valuable insights for researchers, practitioners, and stakeholders involved in Arabic OCR, ultimately fostering advancements in the field and facilitating the creation of more accurate and efficient OCR systems for the Arabic language.