Abstract:Optimizing students' learning strategies is a crucial component in intelligent tutoring systems. Previous research has demonstrated the effectiveness of devising personalized learning strategies for students by modelling their learning processes through partially observable Markov decision process (POMDP). However, the research holds the assumption that the student population adheres to a uniform cognitive pattern. While this assumption simplifies the POMDP modelling process, it evidently deviates from a real-world scenario, thus reducing the precision of inducing individual students' learning strategies. In this article, we propose the homomorphic POMDP (H-POMDP) model to accommodate multiple cognitive patterns and present the parameter learning approach to automatically construct the H-POMDP model. Based on the H-POMDP model, we are able to represent different cognitive patterns from the data and induce more personalized learning strategies for individual students. We conduct experiments to show that, in comparison to the general POMDP approach, the H-POMDP model demonstrates better precision when modelling mixed data from multiple cognitive patterns. Moreover, the learning strategies derived from H-POMDPs exhibit better personalization in the performance evaluation.