Abstract:In real-world data labeling applications, annotators often provide imperfect labels. It is thus common to employ multiple annotators to label data with some overlap between their examples. We study active learning in such settings, aiming to train an accurate classifier by collecting a dataset with the fewest total annotations. Here we propose ActiveLab, a practical method to decide what to label next that works with any classifier model and can be used in pool-based batch active learning with one or multiple annotators. ActiveLab automatically estimates when it is more informative to re-label examples vs. labeling entirely new ones. This is a key aspect of producing high quality labels and trained models within a limited annotation budget. In experiments on image and tabular data, ActiveLab reliably trains more accurate classifiers with far fewer annotations than a wide variety of popular active learning methods.
Abstract:Real-world data for classification is often labeled by multiple annotators. For analyzing such data, we introduce CROWDLAB, a straightforward approach to estimate: (1) A consensus label for each example that aggregates the individual annotations (more accurately than aggregation via majority-vote or other algorithms used in crowdsourcing); (2) A confidence score for how likely each consensus label is correct (via well-calibrated estimates that account for the number of annotations for each example and their agreement, prediction-confidence from a trained classifier, and trustworthiness of each annotator vs. the classifier); (3) A rating for each annotator quantifying the overall correctness of their labels. While many algorithms have been proposed to estimate related quantities in crowdsourcing, these often rely on sophisticated generative models with iterative inference schemes, whereas CROWDLAB is based on simple weighted ensembling. Many algorithms also rely solely on annotator statistics, ignoring the features of the examples from which the annotations derive. CROWDLAB in contrast utilizes any classifier model trained on these features, which can generalize between examples with similar features. In evaluations on real-world multi-annotator image data, our proposed method provides superior estimates for (1)-(3) than many alternative algorithms.