Abstract:In a polynomial regression model, the divisibility conditions implicit in polynomial hierarchy give way to a natural construction of constraints for the model parameters. We use this principle to derive versions of strong and weak hierarchy and to extend existing work in the literature, which at the moment is only concerned with models of degree two. We discuss how to estimate parameters in lasso using standard quadratic programming techniques and apply our proposal to both simulated data and examples from the literature. The proposed methodology compares favorably with existing techniques in terms of low validation error and model size.