Abstract:Decision making under uncertain conditions has been well studied when uncertainty can only be considered at the associative level of information. The classical Theorems of von Neumann-Morgenstern and Savage provide a formal criterion for rationally making choices using associative information. We provide here a previous result from Pearl and show that it can be considered as a causal version of the von Neumann-Morgenstern Theorem; furthermore, we consider the case when the true causal mechanism that controls the environment is unknown to the decision maker and propose a causal version of the Savage Theorem. As applications, we argue how previous optimal action learning methods for causal environments fit within the Causal Savage Theorem we present thus showing the utility of our result in the justification and design of learning algorithms; furthermore, we define a Causal Nash Equilibria for a strategic game in a causal environment in terms of the preferences induced by our Causal Decision Making Theorem.