Abstract:The development of black-box optimization algorithms depends on the availability of benchmark suites that are both diverse and representative of real-world problem landscapes. Widely used collections such as BBOB and CEC remain dominated by hand-crafted synthetic functions and provide limited coverage of the high-dimensional space of Exploratory Landscape Analysis (ELA) features, which in turn biases evaluation and hinders training of meta-black-box optimizers. We introduce Evolution of Test Functions (EoTF), a framework that automatically generates continuous optimization test functions whose landscapes match a specified target ELA feature vector. EoTF adapts LLM-driven evolutionary search, originally proposed for heuristic discovery, to evolve interpretable, self-contained numpy implementations of objective functions by minimizing the distance between sampled ELA features of generated candidates and a target profile. In experiments on 24 noiseless BBOB functions and a contamination-mitigating suite of 24 MA-BBOB hybrid functions, EoTF reliably produces non-trivial functions with closely matching ELA characteristics and preserves optimizer performance rankings under fixed evaluation budgets, supporting their validity as surrogate benchmarks. While a baseline neural-network-based generator achieves higher accuracy in 2D, EoTF substantially outperforms it in 3D and exhibits stable solution quality as dimensionality increases, highlighting favorable scalability. Overall, EoTF offers a practical route to scalable, portable, and interpretable benchmark generation targeted to desired landscape properties.




Abstract:Metaheuristics are universal optimization algorithms which should be used for solving difficult problems, unsolvable by classic approaches. In this paper we aim at constructing novel socio-cognitive metaheuristic based on castes, and apply several versions of this algorithm to optimization of time-delay system model. Besides giving the background and the details of the proposed algorithms we apply them to optimization of selected variants of the problem and discuss the results.