Abstract:Normalizing flows learn a diffeomorphic mapping between the target and base distribution, while the Jacobian determinant of that mapping forms another real-valued function. In this paper, we show that the Jacobian determinant mapping is unique for the given distributions, hence the likelihood objective of flows has a unique global optimum. In particular, the likelihood for a class of flows is explicitly expressed by the eigenvalues of the auto-correlation matrix of individual data point, and independent of the parameterization of neural network, which provides a theoretical optimal value of likelihood objective and relates to probabilistic PCA. Additionally, Jacobian determinant is a measure of local volume change and is maximized when MLE is used for optimization. To stabilize normalizing flows training, it is required to maintain a balance between the expansiveness and contraction of volume, meaning Lipschitz constraint on the diffeomorphic mapping and its inverse. With these theoretical results, several principles of designing normalizing flow were proposed. And numerical experiments on highdimensional datasets (such as CelebA-HQ 1024x1024) were conducted to show the improved stability of training.
Abstract:Flow-based generative models are a family of exact log-likelihood models with tractable sampling and latent-variable inference, hence conceptually attractive for modeling complex distributions. However, flow-based models are limited by density estimation performance issues as compared to state-of-the-art autoregressive models. Autoregressive models, which also belong to the family of likelihood-based methods, however suffer from limited parallelizability. In this paper, we propose Dynamic Linear Flow (DLF), a new family of invertible transformations with partially autoregressive structure. Our method benefits from the efficient computation of flow-based methods and high density estimation performance of autoregressive methods. We demonstrate that the proposed DLF yields state-of-theart performance on ImageNet 32x32 and 64x64 out of all flow-based methods, and is competitive with the best autoregressive model. Additionally, our model converges 10 times faster than Glow (Kingma and Dhariwal, 2018). The code is available at https://github.com/naturomics/DLF.