Abstract:The rapid growth of image data has led to the development of advanced image processing and computer vision techniques, which are crucial in various applications such as image classification, image segmentation, and pattern recognition. Texture is an important feature that has been widely used in many image processing tasks. Therefore, analyzing and understanding texture plays a pivotal role in image analysis and understanding.Local binary pattern (LBP) is a powerful operator that describes the local texture features of images. This paper provides a novel mathematical representation of the LBP by separating the operator into three matrices, two of which are always fixed and do not depend on the input data. These fixed matrices are analyzed in depth, and a new algorithm is proposed to optimize them for improved classification performance. The optimization process is based on the singular value decomposition (SVD) algorithm. As a result, the authors present optimal LBPs that effectively describe the texture of human face images. Several experiment results presented in this paper convincingly verify the efficiency and superiority of the optimized LBPs for face detection and facial expression recognition tasks.
Abstract:The paper provides a mathematical view to the binary numbers presented in the Local Binary Pattern (LBP) feature extraction process. Symmetric finite difference is often applied in numerical analysis to enhance the accuracy of approximations. Then, the paper investigates utilization of the symmetric finite difference in the LBP formulation for face detection and facial expression recognition. It introduces a novel approach that extends the standard LBP, which typically employs eight directional derivatives, to incorporate only four directional derivatives. This approach is named symmetric LBP. The number of LBP features is reduced to 16 from 256 by the use of the symmetric LBP. The study underscores the significance of the number of directions considered in the new approach. Consequently, the results obtained emphasize the importance of the research topic.
Abstract:This paper introduces a new dispersed Haar-like filter for efficiently detection face. The basic idea for finding the filter is maximising between-class and minimising within-class variance. The proposed filters can be considered as an optimal configuration dispersed Haar-like filters; filters with disjoint black and white parts.