Abstract:Diabetes is a raising problem that affects many people globally. Diabetic patients are at risk of developing foot ulcer that usually leads to limb amputation, causing significant morbidity, and psychological distress. In order to develop a self monitoring mobile application, it is necessary to be able to classify such ulcers into either of the following classes: Infection, Ischaemia, None, or Both. In this work, we compare the performance of a classical transfer-learning-based method, with the performance of a hybrid classical-quantum Classifier on diabetic foot ulcer classification task. As such, we merge the pre-trained Xception network with a multi-class variational classifier. Thus, after modifying and re-training the Xception network, we extract the output of a mid-layer and employ it as deep-features presenters of the given images. Finally, we use those deep-features to train multi-class variational classifier, where each classifier is implemented on an individual variational circuit. The method is then evaluated on the blind test set DFUC2021. The results proves that our proposed hybrid classical-quantum Classifier leads to considerable improvement compared to solely relying on transfer learning concept through training the modified version of Xception network.