Abstract:Could artificial intelligence ever become truly conscious in a functional sense; this paper explores that open-ended question through the lens of Life, a concept unifying classical biological criteria (Oxford, NASA, Koshland) with empirical hallmarks such as adaptive self maintenance, emergent complexity, and rudimentary self referential modeling. We propose a number of metrics for examining whether an advanced AI system has gained consciousness, while emphasizing that we do not claim all AI stems can become conscious. Rather, we suggest that sufficiently advanced architectures exhibiting immune like sabotage defenses, mirror self-recognition analogs, or meta-cognitive updates may cross key thresholds akin to life-like or consciousness-like traits. To demonstrate these ideas, we start by assessing adaptive self-maintenance capability, and introduce controlled data corruption sabotage into the training process. The result demonstrates AI capability to detect these inconsistencies and revert or self-correct analogous to regenerative biological processes. We also adapt an animal-inspired mirror self recognition test to neural embeddings, finding that partially trained CNNs can distinguish self from foreign features with complete accuracy. We then extend our analysis by performing a question-based mirror test on five state-of-the-art chatbots (ChatGPT4, Gemini, Perplexity, Claude, and Copilot) and demonstrated their ability to recognize their own answers compared to those of the other chatbots.
Abstract:Diabetes is a raising problem that affects many people globally. Diabetic patients are at risk of developing foot ulcer that usually leads to limb amputation, causing significant morbidity, and psychological distress. In order to develop a self monitoring mobile application, it is necessary to be able to classify such ulcers into either of the following classes: Infection, Ischaemia, None, or Both. In this work, we compare the performance of a classical transfer-learning-based method, with the performance of a hybrid classical-quantum Classifier on diabetic foot ulcer classification task. As such, we merge the pre-trained Xception network with a multi-class variational classifier. Thus, after modifying and re-training the Xception network, we extract the output of a mid-layer and employ it as deep-features presenters of the given images. Finally, we use those deep-features to train multi-class variational classifier, where each classifier is implemented on an individual variational circuit. The method is then evaluated on the blind test set DFUC2021. The results proves that our proposed hybrid classical-quantum Classifier leads to considerable improvement compared to solely relying on transfer learning concept through training the modified version of Xception network.