Abstract:The extensive data interaction demands of an immersive metaverse necessitate the adoption of emerging technologies to enable high-capacity communication. Vortex electromagnetic waves with different orbital angular momentum (OAM) modes are spatially orthogonal, providing a novel spatial multiplexing dimension to achieve high-capacity communication. However, the number of orthogonal OAM modes based on a discrete uniform circular array (UCA) is limited by the number of array elements in the UCA, and traditional discrete channel models are unable to accurately capture the physical properties of vortex electromagnetic wave propagation. The continuous-aperture array (CAPA) is composed of densely packed electromagnetic excitation elements, capable of flexibly and efficiently generating the desired surface currents to produce an arbitrary number of mutually orthogonal OAM modes. From the perspective of electromagnetic information theory (EIT), we propose a CAPA-based OAM orthogonal transmission scheme to realize high-capacity communication. We design the surface currents of the CAPA using Fourier basis functions, derive the electromagnetic channel for vortex electromagnetic waves, and investigate the upper bound of the spectrum efficiency for CAPA-based OAM orthogonal transmission. This paper establishes a theoretical foundation for applying EIT to the orthogonal transmission of vortex electromagnetic waves, offering a novel solution for achieving CAPA-based efficient and high-capacity communication.
Abstract:The vortex electromagnetic wave carried by multiple orthogonal orbital angular momentum (OAM) modes in the same frequency band can be applied to the field of wireless communications, which greatly increases the spectrum efficiency. The uniform circular array (UCA) is widely used to generate and receive vortex electromagnetic waves with multiple OAM-modes. However, the maximum number of orthogonal OAM-modes based on UCA is usually limited to the number of array-elements of the UCA antenna, leaving how to utilize more OAM-modes to achieve higher channel capacity with a fixed number of arrayelements as an intriguing question. In this paper, we propose an N-dimensional quasi-fractal UCA (ND QF-UCA) antenna structure in different fractal geometry layouts to break through the limits of array-elements number on OAM-modes number. We develop the N-dimensional OAM modulation (NOM) and demodulation (NOD) schemes for OAM multiplexing transmission with the OAM-modes number exceeding the array-elements number, which is beyond the traditional concept of multiple antenna based wireless communications. Then, we investigate different dimensional multiplexing transmission schemes based on the corresponding QF-UCA antenna structure with various array-element layouts and evaluate the optimal layout type and dimension to obtain the highest channel capacity with a fixed number of array-elements. Simulation results show that our proposed schemes can obtain a higher spectrum efficiency, surpassing those of alternative array-element layouts of QF-UCA and the traditional multiple antenna systems.
Abstract:The vortex electromagnetic wave carried by multiple orthogonal orbital angular momentum (OAM) modes in the same frequency band can be applied to the field of wireless communications, which greatly increases the spectrum efficiency. The uniform circular array (UCA) is the classical structure to generate and receive vortex electromagnetic waves with multiple OAM-modes. However, when the transmit and receive UCAs are misaligned, there will be interference among the OAM-modes and the signal cannot be recovered at the receiver. In order to solve this problem, we propose movable antenna (MA) assisted OAM wireless communications scheme. We estimate the rotation angle between transmit and receive UCAs and feed it back to the transmitter. Then, the MA at the transmitter adjusts the rotation angle to achieve alignment of the UCA at both the receiver and transmitter. Simulation results show that our scheme can significantly improve the spectrum efficiency.